

S-TURB Gas Turbine Flow Meter

User Manual

1. Table of contents

2.	Features	1
3. [·]	Technical Data	3
	3.1 Operating Environment	3
	3.2 Nominal Diameter	3
	3.3 Pressure	3
	3.4 Measuring Range Ratio	4
	3.5 Accuracy	4
	3.6 Repeatability	4
	3.7 Protection Grade	4
	3.8 Shell Material	4
	3.9 Electrical Performance Indicators	4
4.	Introduction	7
	4.1 Working Principle	7
	4.2 Working Principle Diagram	7
	4.3 Structure Drawing	8
	4.4 Dimension	8
	4.5 Selection of Flow Meter	9
5.1	nstallation	11
	5.1 Straight Pipe Requirements:	. 12
	5.2 Pipeline Requirements:	12
	5.3 Bypass Pipe Requirements:	12
	5.4 Environment Requirements:	12
	5.5 Impurities in the Medium:	12
	5.6 Installation Place:	. 12
	5.7 Installation and Welding Requirements:	. 12
	5.8 Grounding:	. 12

6.	Flow Meter Display/Parameters Setting	13
	6.1 Working Condition	13
	6.2 Function Description of Keys	14
7.	Terminal Structure & Connection Instruction of Flow meter	15
	7.1 Connection	15
	7.2 External Terminal Definition	15
	7.3 Output Wiring Instructions	16
8	Application Note	18
9.	Maintenance and Troubleshooting	19
10.	Transportation and Storage	21
	10.1 The Flow Meter Should be Well Packed	21
	10.2 The Storage Location Should Meet the Following Conditions	21
11.	Unpacking and Inspection	21
	11.1 Check the Integrity of The External Packaging When Unpacking	21
	11.2 Accessories	21
12.	Communication Protocol(RTU) (V1.0)	21
	12.1 Data Format Description	21
	12.2 Command Description	23

1. Table of contents

The gas turbine flow meter is a precision measuring instrument used for gas flow measurement. It has small pressure loss, high accuracy, and low dynamic flow, great anti-vibration and anti-pulsation performance, wide range ratio, excellent low and high-pressure measurement performance, multiple signal output methods and low sensitivity to fluid disturbances.

Gas turbine flow meter take into account the compressibility of gases, and the correlation between volume, temperature and pressure of the medium. To convert Process Work Condition medium to Standard Condition, temperature and pressure sensors are added to track temperature and pressure changes of the measuring medium.

Gas turbine flowmeters are widely used in gas metering and gas pressure regulating stations for petroleum gas, chemical gas, electric power and industrial boilers, as well as gas transmission and distribution pipeline networks, urban natural gas metering.

2. Features

- 2.1 Advanced rectification technology assures the reliability of metering accuracy under unsatisfactory installation conditions such as short front and rear straight pipe sections, vibrations, or large variations of flow rate;
- 2.2 The advanced dust-proof structure effectively prevent the rapid wear and stuck of bearing caused by the impurities in the medium;
- 2.3 Oxidized high-strength aluminum alloy turbine and impeller are

corrosion-resistant, and anti-aging, they offer long service life, high accuracy, and good repeatability;

- 2.4 German-made high-precision, dust-proof, stainless steel special bearings for flow meters, with good stability, high accuracy, good sensitivity, long service life and wide range;
- 2.5 Built-In temperature and pressure sensors can measure temperature, pressure and flow rate of gases. The sensors are used to do compensation for temperature and pressure change automatically. Instantaneous flow and accumulated flow are displayed in normal condition units.
- 2.6 Advanced dual-power supply, micro-power consumption technology. One set of two lithium batteries are expected to operate 3+ years, external power supply optional. Gas turbine flow meter also has battery under-voltage, or valve closing alarm output function, it is suitable for usage with an IC card management system.
- ullet 2.7 Diversified output signal, (4 \sim 20) mA standard analog signal, working condition pulse signal, IC card standard volume signal and 485 communication available.
- 2.8 According to user needs, the GPRS network function can be provided to realize low-cost, long-distance wireless data real-time transmission; IoT interface function is reserved to realize the IoT function.
- 2.9 Internal battery low-voltage alarm reminds users to replace batteries in time;
- 2.10 Intelligent flow Totalizer can rotate 350° counterclockwise, convenient for data reading in different directions.
- 2.11 Time display and real-time data storage ensure that the internal data will not be lost and can be stored permanently.
- $lue{}$ 2.12 Large-screen LCD, displaying rich and clear contents; The LCD screen of the Totalizer can withstand a high temperature of 80 $^{\circ}$ C.
- 2.13 Flow upper limit and pressure upper alarm error display and record feature, allow users to analyze flow patterns.

- 2.14 Working modes can be switched automatically, battery-powered, two-wire system, and three-wire system.
- 2.15 When the system module fails, it will display the fault content and initiate the corresponding mechanism.
- 2.16 Diversified pressure ports, supports digital pressure sensor and pressure sensor; PT100 or PT1000 temperature sensors are supported.
- 2.17 Automatically run diagnosis upon pressure/temperature sensor failure. In the presence of sensor failure, Totalizer will use preset pressure and temperature value for smart compensation.
- 2.18 Unique reverse thrust structure design reduces and balances the bearing force, ensuring a reliable long-term use of the bearing.
- 2.19 The unique pressure balance design of the sealed chamber can effectively reduce wearing or stuck of the bearing caused by dust or impurities.

3. Technical Data

3.1 Operating Environment

Ambient Temperature	-30℃~+50℃
Medium Temperature	-30℃~+80℃
Relative Humidity	5%~95%
Atmospheric Pressure	50kPa~110kPa

3.2 Nominal Diameter

DN25~DN400, larger diameter gas turbine flow meter can be manufactured upon request.

3.3 Pressure

(0.5~4.0) MPa, higher pressure versions gas turbine flow meter can be manufactured upon request.

3.4 Measuring Range Ratio

Under standard environmental conditions (P=101.325kPa, T=293.15K), the range can reach 40:1 or wider.

(*Note: For some smaller diameter turbine flow meters, the ratio will be reduced).

3.5 Accuracy

±1.0%	(0.2Qmax \sim Qmax \pm 1.0%; Qmin $^{\sim}$ 0.2Qmax \pm 2.0%)
±1.5%	(0.2Qmax \sim Qmax \pm 1.5%; Qmin \sim 0.2Qmax \pm 3.0%)

(*Note: Qmin is the minimum flow rate that can be measured within the flow rate range, and Qmax is the maximum flow rate that can be measured within the flow rate range.

Special order meters are delivered according to 1.5 grades, and the other accuracy grades need to be specified when ordering)

3.6 Repeatability

Better than ±0.2%.

3.7 Protection grade: IP65

3.8 Shell Material

Aluminum alloy, Stainless steel.

3.9 Electrical Performance Indicators

3.9.1 Power Supply

- 1) External power supply: 12~24VDC±15%, ripple current <5%, suitable for 4~20mA output, pulse output, alarm output, RS485, etc.
- 2) Internal power supply: 1 set of two 3.6V lithium batteries, when the voltage is lower than 3.0V, an under-voltage indication will appear.

3.9.2 Power Consumption:

- 1) External power supply: <2W.
- 2) Internal power supply: average power consumption ≤1mW, a set of two lithium batteries can be used continuously for more than 3 years, and power consumption ≤0.3mW when in the sleep state.

3.9.3 Pulse Output Type:

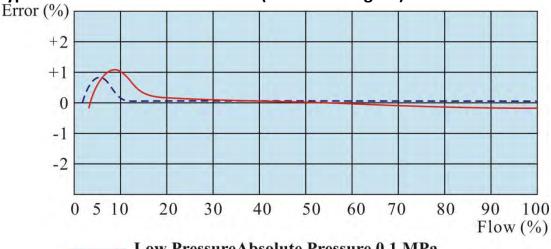
1)Working condition pulse signal (FOUT), directly amplify and output the working condition pulse signal detected by the flow sensor through optocoupler isolation,

high-level \geq 20V, low-level \leq 1V.

2)Equivalent pulse signal (H/L), amplified and output by optocoupler isolation, high -level amplitude ≥20V, low-level amplitude ≤1V, unit pulse represents the volume of standard conditions. The settable range: 0.01 m3, 0.1 m3, 1m3, 10m3; upper and lower limit alarm signal (H/L): photoelectric isolation, high and low-level alarm, working voltage 12V~24V, maximum load current 50mA.

3.9.4 RS485 Communication(Optical isolation), The Following Functions Can be Achieved:

Using RS485 interface, it can be directly connected to the host computer or secondary meter, and can remotely transmit the medium's temperature, pressure, instantaneous flow rate, total standard volume and meter's real-time data.


3.9.5 $4\sim$ 20mA Standard Current Signal (Optical Isolation)

It is proportional to the standard volume flow rate, 4mA corresponds to 0 m3/h, 20 mA corresponds to the maximum standard volume flow rate (this value can be set in the first level menu), system: two-wire or three-wire system, the flow meter can recognize and outputs correctly based on the inserted current module automatically.

3.9.6 Control Signal Output:

- 1) IC card standard volume signal (IC_out): output in pulse signal, the pulse width is 50ms, 100ms, 500ms, the pulse amplitude is about 3V, normal level can be set, transmission distance ≤50m, each pulse represents 0.01m3, 0.1m3, 1m3, 10m3, suitable for use with IC card system.
- 2) Battery voltage output (BC terminal, first-level battery low voltage alarm): open collector output, amplitude \geq 2.8V, load resistance \geq 100k Ω .
- 3) Battery under-voltage alarm output (BL terminal, secondary battery low voltage alarm): open collector output, amplitude ≥2.8V, load resistance ≥100k Ω .

3.9.7 Typical Error Curve of Flow Meter (See Below Figure)

Low PressureAbsolute Pressure 0.1 MPa

- - High PressureAbsolute Pressure 0.1 MPa

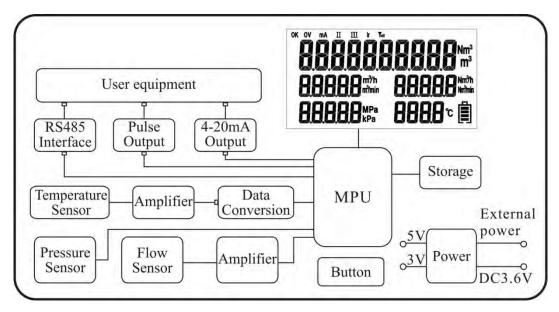
3.9.8 Flow Range

Diameter (mm/inch)	Model	Flow Specifi Cation	Flow Range (m³/h)	Startup Flow Rate (m³/h)	Maxi. Pressure Loss (kPa)	Shell Material	Weight (kg)
DN25(1")	25(A)	G50	5-50	≤1	1		7
DN40(1½")	40(A)	G60	6-60	≤1	1		8
	50(A)	G40	6.5-65	≤1.3	0.9		
50(2")	50(B)	G65	8-100	≤1.6	0.8		8.5
30(2)	50(C)	G100	10-160	≤2.4	2.0		0.5
	80(A)	G100	8-160	≤2.4	1.0	Standard:Al	
80(3")	80(B)	G160	13-250	≤3.0	1.6	uminum	9.5
80(3)	80(C)	G250	20-400	≤5.0	2.0	Alloy	5.5
	100(A)	G160	13-250	≤3.3	1.0	(Press≤1.6	
100(4")	100(B)	G250	20-400	≤4.2	1.6	Mpa) Optional:	15
100(4)	100(C)	G400	32-650	≤6.7	1.8	SS304	13
	150(A)	G400	32-650	≤7.8	1.6		
150(6")	150(B)	G650	50-1000	≤10	2.0		27
130(0)	150(C)	G1000	80-1600	≤12	2.3		21
	200(A)	G650	50-1000	≤13	1.6		
200(8")	200(B)	G1000	80-1600	≤16	2.0		45
200(8)	200(C)	G1600	130-2500	≤20	2.2		43
	250(A)	G1000	80-1600	≤20	1.2		
250(10")	250(B)	G1600	130-2500	≤22	2.0		128
230(10)	250(C)	G2500	200-4000	≤25	2.3		120
	300(A)	G1600	130-2500	≤22	1.6		
300(12")	300(B)	G2500	200-4000	≤25	2.0	CC204	265
300(12)	300(C)	G4000	320-6500	≤35	2.3	SS304	203
	400(A)	G1600	300-2500	≤25	1.8		
400(16")	400(B)	G2500	500-4000	≤35	2.0		380
400(10)	400(C)	G4000	600-8000	≤40	2.3		300

- 1. Accuracy: ±1.5% (standard), ±1.0% (optional)
- 2. "Max. pressure loss" is the measured pressure loss value when medium is air and at Max. flow under the standard state.

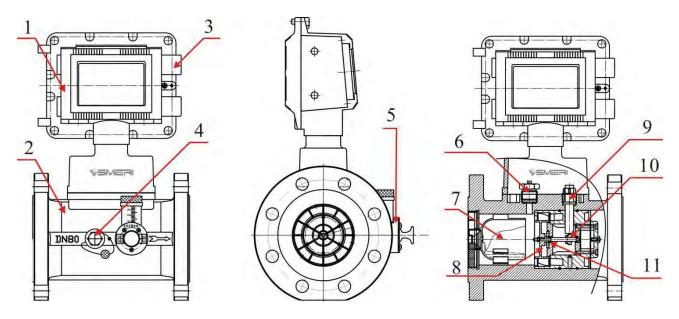
- 3. Shell pressure grade: 1.6MPa, 2.5MPa and 4.0MPa.
- 4. Weight is the reference data under pressure of 1.6MPa.
- 5. Above is uncorrected flow range at the condition of air under normal temperature & pressure.
- 6. If any special requirement, please specify when ordering.

4. Introduction

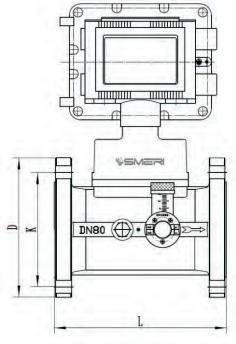

4.1 Working Principle

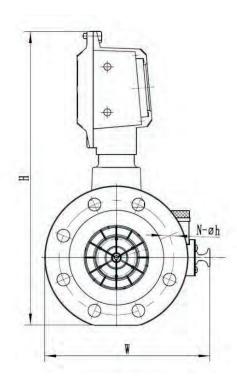
When the gas through the flow meter, it is rectified and accelerated as it passes through the integrated two-stage rectifier, then it acts on the turbine blades at a certain angle to the flow direction. Under the momentum of the gas, because the turbine blades are at a certain angle with the flow direction of the gas, the turbine generates a rotational torque at this time, the turbine begins to rotate after it overcomes the resistance torque and the friction torque.

When the torques are balanced, the rotation speed is constant, and the turbine rotation angular velocity has a linear relationship with the flow rate. Using the principle of electromagnetic induction, a rotating turbine drives the top magnetizer of the signal generator to periodically change the magnetic resistance, so that the magnetic field also changes accordingly, thereby inducing a pulse signal proportional to the fluid volume flow.


The signal is amplified by the preamplifier, and after shaping, the pressure and temperature signals detected by the pressure sensor and the temperature sensor are input to the flow totalizer for calculation processing and converted into a flow value, which directly displays the standard instantaneous volume flow and volume total flow.

4.2 Working Principle Diagram




4.3 Structure Drawing

1.Flow totalizer	7.Rectifier
2.Shell	8. High-strength antioxidation turbine
3.Cable entry	9.Temperature and flow sensor
4.Pressure port	10.Signal wheel
5.Fuel pump	11.High-precision imported dustproof
6.Pressure sensor	bearings

4.4 Dimension

Nominal Dia.	L	D	K	N-Ø h	Н	W	Notes
DN25(1")	200	115	85	4-ф14	335	200	
DN40(1½")	200	150	110	4-ф18	365	230	
DN50(2")	150	165	125	4-ф18	375	275	
DN80(3")	240	200	160	8-ф18	409	280	
DN100(4")	300	220	180	8-ф18	430	285	
DN150(6")	450	285	240	8-ф22	495	370	1.DIN PN16
DN200(8")	600	340	295	12-ф22	559	390	2.Pressure: 1.6MPa 3.Unit: mm
DN250(10")	750	405	355	12-ф26	629	480	5.0IIII. IIIIII
DN300(12")	900	460	410	12-ф26	680	535	
DN400(16")	1200	580	525	16-ф30	793	665	

(Note: Above size is standard, if non-standard size be inquired, please contact us)

4.5 Selection of Flow Meter

Gas turbine flow meter integrates flow sensor, temperature sensor, pressure sensor and intelligent flow totalizer to realize the temperature and pressure compensation and compression factor correction of the flow, directly display the volume flow under the standard state. According to the gas equation of formula (1) to calculate and compensation. The gas equation is as follows (circuit):

$$Q_n = \frac{P_a + P_g}{P_n} \times \frac{T_n}{T_o} \times \frac{Z_n}{Z_o} \times Q_g \quad \cdots \qquad \cdots \qquad (1)$$

In Formula:

Qn: Corrected volume flow (m3/h)

Qg: Uncorrected volume flow (m3/h)

Pa: Local atmospheric pressure (kPa)

Pg: Gauge pressure at the pressure detection point of the flowmeter (kPa)

Pn: Standard atmospheric pressure (101.325kPa)

Tn: Absolute temperature under standard state 293.15K (20℃)

Tg: The absolute temperature of the medium (273.15K+T)

T: Celsius temperature of the measured medium ($^{\circ}$ C)

Zn: Media compressibility under standard conditions

Zg: Media compression factor under working conditions

(*Note: For natural gas Zn/Zg=(FZ)2, FZ is the super compressibility factor, calculated

according to the formula in China National Petroleum Corporation's standard SY/T6143-1996) (circuit)

How to Choose the Size of Flow Meter?

The user should estimate the maximum and minimum volumetric flow of the pipeline according to the gas volume of the pipeline and the possible temperature and pressure range of the medium, then select the flow meter specifications correctly. When two sizes of flow meters can both cover the minimum and maximum volumetric flow rate, the smaller size flow meter should be selected when the pressure loss allows.

Formula as follows:

$$Q_g = Q_n \div \left[\frac{P_a + P_g}{P_n} \times \frac{T_n}{T_o} \times \frac{Z_n}{Z_o}\right] \quad \cdots \qquad (2)$$

In Formula:

Tg, Pg, Pa same as above

Qg is working condition volumetric flow

On is the standard volumetric flow

Example of How to Choose the Size of Flow Meter

One pipeline actual working pressure range is gauge pressure (1.0 \sim 1.2) MPa, the medium temperature is (-10 \sim +40) $^{\circ}$ C , max standard flow is 10000m3/h, min standard flow is 3500 m3/h. Natural gas actual relative density is Gr=0.519,N2 Moles is Mn=1.6%, CO2 Moles is MC=0.8%

When atmospheric pressure is 101.325kPa, which size of flow meter should choose? According to the above information:

When the lowest pressure and highest temperature, according to formula SY/T6143-1996,

We can get that Zn/Zg=1.0127, and max volumetric flow:

$$Q_{g \max} = Q_n \div \left[\frac{P_a + P_g}{P_n} \times \frac{T_n}{T_g} \times \frac{Z_n}{Z_g}\right]$$
=10000 ÷ {[(1000+101.3)/101.325] × [293.15/(273.15+40)] × 1.0127}
=970.5 (m3/h)

The same we can get the min volumetric flow is 236 m3/h Thus we need to choose DN150mm gas turbine flow meter.

Gas Turbine Flow Meter Pressure Loss

The pressure loss of the gas turbine flow meter is related to the drive of the turbine flow meter, the friction inside the pipeline, and the direction & speed of the fluid.

The pressure loss of the turbine flow meter in the working state is obtained by the following formula:

In Formula:

ρ n:Density of gas in standard state

 \triangle Pmax:Max. pressure lose in standard state(medium is dry air)

 $(20^{\circ}\text{C},101.325\text{kPa}, \ \rho = 1.205\text{kg/m3})$

Pa:Local atmospheric pressure(kPa)

Pg:Medium meter pressure(kPa)

Pn:Standard atmospheric pressure(kPa)

Tn:Absolute temperature under standard condition(273.15+20 $^{\circ}$ C)

Tg:Absolute temperature under working condition(273.15+T)

T:Tested medium temperature ($^{\circ}$ C)

Zn:Gas compressibility under standard conditions

Zg:Gas compressibility under working conditions

Q:flow under working condition(m3/h)

Qmax:Max flow under working condition(m3/h)

Gas Density Under Standard Condition:

Gas	Density(kg/m ³)	Gas	Density(kg/m ³)
Natural Gas(H4)	0.828	Carbon monoxide(CO)	1.250
Ammonia(NH2)	0.771	Methane(CH4)	0.720
Argon(Ar)	1.780	Propane(C3H8)	2.010
Butane(C4H10)	2.700	Pentane(C5H12)	3.460
Ethane(C2H6)	1.360	Nitrogen(N2)	1.250
Ethylene(C2H4)	1.260	Hydrogen(H2)	0.090
Carbon Dioxide(CO ₂)	1.980	Air(N2+O2)	1.290

5.Installation

For high accuracy measuning, gas turbine flow meter should be installed correctly.

5.1 Straight Pipe Requirements:

1)Flow meter should be installed on the pipe horizontally(The inclination is within 5°). The axis of the flow meter should be concentric with the axis of the pipeline during installation, and the flow direction should be same as flow meter's measuredirection.

2)There should have straight pipe not less than 2D upstream of the flow meter. If it's possible, it is recommended that the upstream straight pipe section be 20D and the downstream be 5D.

5.2 Pipeline Requirements:

Pipeline inner diameter should be same as flow meter's inner diameter.(Both upstream and downstream)

5.3 Bypass Pipe Requirements:

To make sure it would not affect the medium's using while maintain the flow meter, we should install shut off valve before and behind the pipe.

5.4 Environment Requirements:

Flow meter is better to be installed indoor. While install outdoor, please take sun protection, rain protection measures so as not to affect the service life.

5.5 Impurities in the Medium:

To ensure a long service life, filter is required to protect the flow meter's normal working.

5.6 Installation Place:

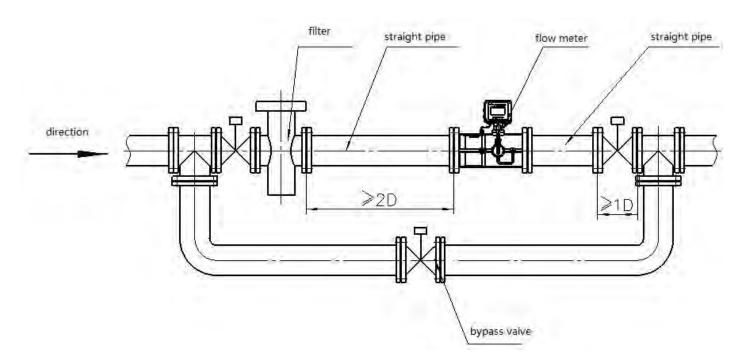
Flow meter should be installed in a place that is convenient for maintenance and free from strong electromagnetic interference and heat radiation.

5.7 Installation and Welding Requirements:

- 1)User should match a pair of flanges to install flow meter, don't welding the flow meter on pipe directly.
- 2)Before installation, the welding slag and other dirt in the pipeline should be cleaned.

Notice: The gasket between the flanges cannot be recessed into the pipe.

5.8 Grounding:


Flow meter should be grounded reliably, and it can not share ground wire with any strong other current system.

5.9 Explosion Proof Requirements:

To ensure safety, please check whether the working environment of the explosion-proof flow meter conforms to the user's explosion-proof requirements and regulations. Please strictly abide by the national explosion-proof product requirements during installation and using. User is not allowed to change the connection method of the explosion-proof system and is not allowed to open the front and back cover, pressure port and other components of the flow meter when flow meter is working.

5.10 Installation Diagram:

6. Flow Meter Display/Parameters Setting

6.1 Working Condition

Flow meter will perform a self-check when it is powered on. If the self-check is abnormal, the self-check error menu will be displayed (refer to the self-check menu for the description), and it will jump to the main interface after about 1 to 2 seconds. Otherwise, it will directly jump to the main menu.

Main interface

1: Total Flow

2: Working Condition

(3): Standard Condition

4): Pressure

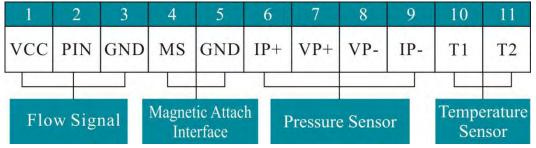
5: Temperature

- 1) "OK": The running status of the flow meter. If it displays "OK", it means the flow meter is working well. if it display"ERR", please check the self check menu for more information.
- 2) "OV": The operating parameter of the instrument overflows. If the operating parameter of the instrument overflows, it will display "OV". If it is normal, it will display empty (overflow includes the parameter that cannot be negative is negative, and the value that cannot be zero is zero, and the data exceeds the display range);
- 3) "mA: The indicator of the current output overflow of the instrument, if the current overflows, it will display "mA", if it is normal it will be empty;
- 4) "II" and "III": Operating power supply mode display. If it is in battery mode, the current battery level will be displayed. When the two-wire current output is connected, the number sign "II" will be displayed. If it is three-wire system, the number sign "III" will be displayed.
- 5) "IR":Remote control button prompt, when this symbol appears, it indicates that the remote control button is available.
- 6) Wireless communication, prompting the communication signal strength;
- 7) Total amount: cumulative flow, the display value can retain 5 decimal places, the maximum value is 999999999; the unit is m3, Nm3 is optional.
- 8) Flow rate under working conditions: the minimum display value is 3 decimal places, and the maximum value is 99999m3/h.
- 9) Flow rate under standard conditions: the minimum displayed value is 3 decimal places, and the maximum value is 99999Nm3/h.
- 10) Pressure: The minimum display value is 3 decimal places, the maximum value is 99999, and the unit Kpa and Mpa are optional.
- 11) Temperature: display value range is $-50^{\circ}\text{C} \sim +300^{\circ}\text{C}$;
- 12) Operation power supply mode display, and displays battery power.

Warning: Don't open the cover when there is explosive gas on site!

6.2 Function Description of Keys

The flow meter is used to set the parameters by pressing the buttons. Generally, some parameters need to be set manually by pressing the buttons during use. The flow meter has four buttons, from left to right, there are four buttons: SET, SHT, INC and RST. The description of the buttons is as follows:


Button	Name	Function
SET	Set Key	Enter parameter setting. Switch to display each parameter item. Confirm and save new parameters after modifying and setting the parameter.
SHT	Shift	Make the parameters flicker in turn
INC	Plus	To cause a bit of parameter to flicker from 0 to 9.

RST	Fyit Key	Exit the parameter setting interface and enter the flow display
11.51	LAICINCY	interface

7. Terminal Structure & Connection Instruction of Flow meter

7.1 Connection

1)The flow meter can receive processed signals and can supply power to the signal processing board. The wiring is as followings:

VCC: supply power 3V PIN: frequency In GND: ground

2) Magnetic Attack Interface:

MS: magnetic attack input

GND: ground

3)Pressure Sensor:

IP+,pressure sensor power supply +

VP+,pressure sensor signal + VP-,pressure sensor signal -

IP-, pressure sensor power supply -

4)Temperature Sensor(PT100 or PT1000):

T1: PT100(1) T2: PT100(2)

7.2 External Terminal Definition

1) J17 Terminal Definition

1	2	3	4	5	6	7	8	9
+24V	0V	 +	-	FOUT	DOUT	/	Α	В

+24V: Power supply DC24V+	FOUT: Pulse output
0V: Power supply 0V	DOUT: Equivalency output
I+: Current output	A: RS-485 A
I-: Current output	B: RS-485 B

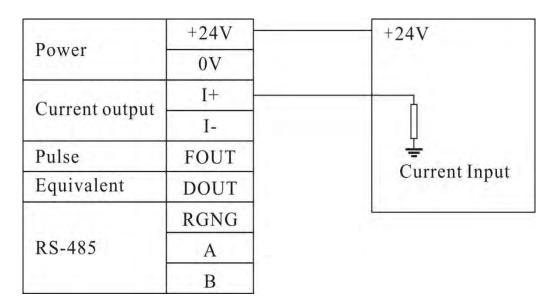
2) J18 Terminal Definition

1	2	3	4	5	6	7	8
+24V	0V	l+	 -	FOUT	DOUT	/	Α

A1: Reserved RS485

IC: IC card controller pulse (amplitude 3VDC)

BC: First level low power alarm, used for IC valve control


BL: Second order to low power alarm, used for IC valve control.

GND: IC card controller pulse Output
GND: GND Output(Controllable)

VCC: +3VDC Output(Controllable)

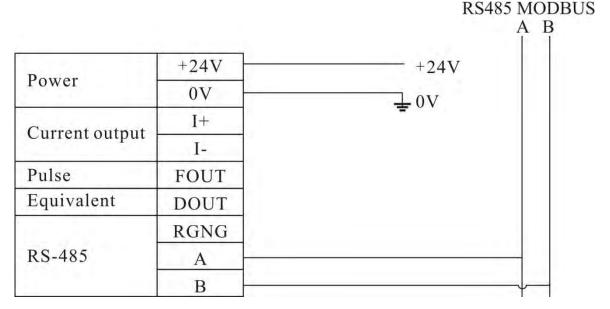
7.3 Output Wiring Instructions

1) Two-wire current connection:

2) Three-wire system current connection method:

D	+24V	+24V
Power	0V	± 0V
Current output	I+	1
Current output	I-	Current
Pulse	FOUT	± Input
Equivalent	DOUT	11.7
	RGNG	
RS-485	A	
	В	

3) Three-wire pulse connection:


D	+24V	+24V
Power	0V	→ 0V
Current output	I+	± v,
Current output	I-	
Pulse	FOUT	Pulse Input
Equivalent	DOUT	
	RGNG	
RS-485	A	
_ = = = = = = = = = = = = = = = = = = =	В	

4)Three-wire equivalent connection:

Damas	+24V	+24V
Power	0V	± 0V
Current output	I+	
Current output	I-	
Pulse	FOUT	
Equivalent	DOUT	Equivalent
	RGNG	Input
RS-485	A	
	В	

5) RS485 Communication connection:

8. Application Note

- 8.1 The selection should be within the specified flow range to prevent long-term overload operation to ensure the desired accuracy and normal service life.
- 8.2 When the flow meter is installed and put into operation, the front valve should be opened slowly, and then the rear valve should be opened to prevent instantaneous airflow from damaging the turbine.
- 8.3 Lubricating oil should be operated in accordance with the refueling sign. The number of refueling depends on the cleanliness of the temperament, usually every 2 to 3 months.
- 8.4 Prevent the turbine from over-speeding due to pressure test, purging pipes or exhaust, and the turbine running in reverse flow may damage the flow meter.
- 8.5 It is not allowed to open the front cover at will when the flow meter is running (there is a circuit board in the cover, and an accidental short circuit will cause electric sparks. When there is flammable and explosive gas at the scene, it will cause serious accidents), and change the operating parameters (changing the parameters will affect The normal operation of the flow meter).(Circuit)
- 8.6 Install gaskets carefully to ensure that no protrusions enter the pipeline to prevent interference with normal flow measurement.
- 8.7 When the flow meter is calibrated, the pressure should be collected on the

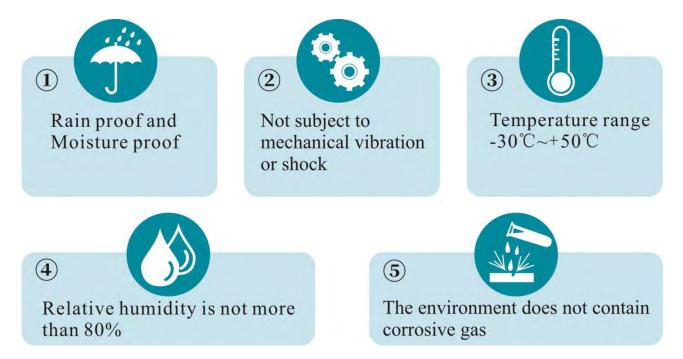
pressure port of the flow meter. After the calibration is completed, the pressure port bolt should be tightened in time to prevent air leakage during use.

- 8.8 The upper limit pressure should be correctly selected according to the actual working pressure. The working pressure range of the corrector is required to be 20% Pmax ~ Pmax. Too small a pressure will affect the measurement accuracy, and if the upper limit pressure is too large, the pressure sensor will be damaged.(Circuit)
- 8.9 When the electronic volume corrector is in operation, it is not allowed to open the back cover or change the internal related parameters, otherwise it will affect its operation.(Circuit)
- 8.10 If the volume corrector outputs a 4-20mA current signal, in order to improve its accuracy, the user should set the value corresponding to 20mA according to the actual maximum value. (Circuit)

9. Maintenance and Troubleshooting

Fault Description	Causes	Solution
After power on no output signal	1.No flow rate or flow rate is lower than starting flow rate 2.Checking the power supply and whether the output wiring is normal	1.Increase flow rate 2.Correct wiring
Display instantaneous flow under no flow in pipe	Poor grounding of the flow meter or other electrical interference Unstable power supply, poor filtering or other electrical interference	1.Correct grounding wiring, preclude interference2.Maintenance/replace power, preclude interference

No display when gas flows through the flow meter	Flow rate is lower than the starting flow Impurities in the pipeline jam the impeller 3. Pressure difference between the two ends of the instrument is too large to cause shock 4. The over-range causes the over-speed to damage the bearing	Replace instrument or use smaller size Clean Impurities Return to factory
Instantaneous flow rate is unstable	The impeller speed of the flow meter is unstable and the flow is unstable Poor grounding 3.Unstable power supply 4.There are impurities in the shell The flow is below the low limit The gasket extends into the pipe to cause interference 7.Unsteady flow rate	Reinstall the impeller or remove dirt Checking grounding wiring and make it correct 3.Repair and replace the power supply, eliminate interference 4.Remove dirt 5.Increase flow rate Replace or correct sealing gasket Measuring again after flow rate is stable
Cumulative does not match the actual flow	1.Wrong K factor 2.The user's normal flow is lower or higher than the normal flow range of the selected flow meter	1.Enter new K factor 2.Adjust the pipeline flow rate to make it normal or select appropriate specifications 3.Calibrate again
Abnormal Display	Key issue	Replace Key
Converter crash after replacing a new battery	The power-on reset circuit is abnormal or the oscillation circuit does not vibrate	Reinstall the battery (need to discharge after 5 seconds)



10. Transportation and Storage

10.1 The Flow Meter Should be Well Packed

(the medium and small diameters should be packed in a carton with foam for anti-vibration). It is not allowed to move freely in the box. When moving, handle it with care and do not allow rough handling.

10.2 The Storage Location Should Meet the Following Conditions

11. Unpacking and Inspection

11.1 Check the Integrity of The External Packaging When Unpacking Check the contents, specifications.

11.2 Accessories

- 1) Filter gasket (1 piece)
- 2) Rubber gasket (1 piece)
- 3) Bearing lubricant (1 bottle)

12.Communication Protocol(RTU) (V1.0)

12.1 Data Format Description

12.1.1 Communication Mode

This meter adopts MODBUS RTU Format.

The protocol is used for data communication in master-slave query mode.

12.1.2 Data Format

Data format is n, 8, 1 (1 start bit, 8 data bits, 0 parity bit, 1 stop bit)

Baud: 1200, 2400, 4800, 9600

Start	Address	Function	Data	CRC Check	END
T1-T2-T3-T4	8 bit	8 bit	n*8 bit	16 bit	T1-T2-T3-T4

Note: T1, T2, T3, T4 are the time intervals between each frame, and the transmission between two frames must be greater than the interval time.

12.1.3 Address

The address of the instrument is specified in the protocol as "0-255", the "0" address is used for broadcasting (this protocol does not support broadcasting), and the rest is reserved.

12.2 Command Description

12.2.1 This Instrument Uses 1 Command in MODBUS Protocol as Below:

0 100	
Command 03	Read single or multiple holding registers
Communa 05	redu single of martiple holding registers

12.2.2 Data Format

The data in the protocol includes: integer, floating point

Integers are represented as 16-bit unsigned integers.

32 single-precision floating-point numbers (SINGLE format) is IEEE754, equivalent to 4 bytes, the arrangement order is 3-4-1-2

After converting to the 1234 sequence, the positions from highest to lowest are 31st, 30th, 29th, ..., 0.

31	30-23	22-0
S	Level Code	Tail Code

The 31st bit is the sign bit (S), 1 indicates that the number is negative, 0 otherwise; 30-23 bit, Total 8 bit level code;

22-0 bit, Total 23 bit tail code.

Command 3 Format As Below: (Read Register Command):

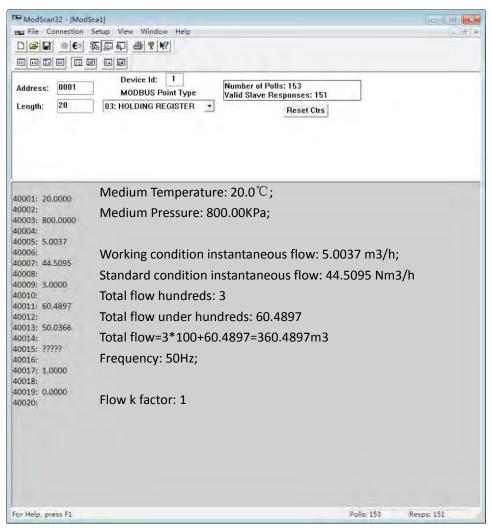
MODBUS Query:

Meter Address	1 BYTE	01-255
Function Code	1 BYTE	03
Starting Address	2 BYTE	0-FFFF
Loader /Reads As	2 BYTE	1-20
CRC Low	1 BYTE	
CRC High	1 BYTE	

MODBUS Response:

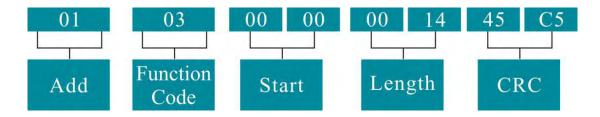
Meter Address	1 BYTE	01-255
Function Code	1 BYTE	03
Byte Count	1 BYTE	N
Input Mode	N*2 BYTE	
CRC Low	1 BYTE	
CRC High	1 BYTE	

Example:


Query		Respond	
Domain	Data(HEX)	Domain	Data(HEX)
Meter Address Code	01	Meter Address Code	01
Function Code	03	Function Code	03
Starting Address High (byte)	00	Byte Count	08
Starting Address Low (byte)	00	Register High (0001)	0C
Read Data Volume High (Byte)	00	Register Low (0001)	E8
Read Data Volume Low (Byte)	04	Register High (0002)	C2
		Register Low (0002)	FB
		Register High (0003)	C 9
		Register Low (0003)	26
		Register High (0004)	C3
		Register Low (0004)	7B
CRC Check	Parity bit	CRC Check	Parity bit

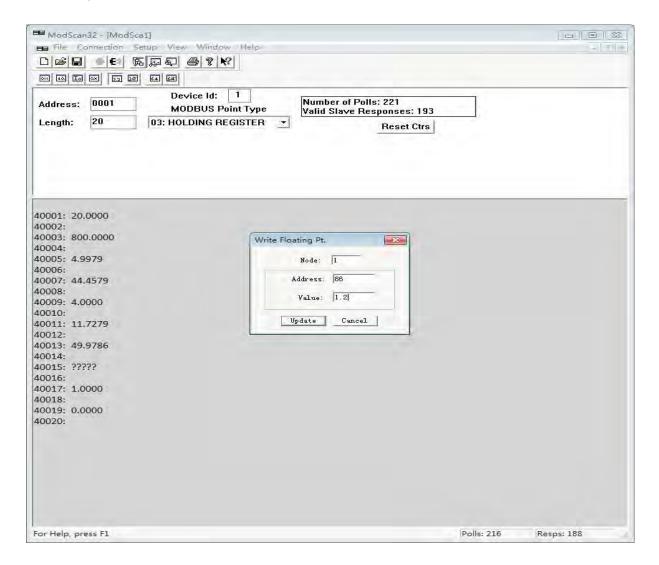
Data Definition

Read-Write	Address	Register Length	Data Type	Discription
R	40001-2	2	SINGLE	Medium Temperature (°C)
R	40003-4	2	SINGLE	Medium Pressure(kPa)
R	40005-6	2	SINGLE	Instant Flow(m ³ /h)
R	40007-8	2	SINGLE	Nominal Instant Flow(Nm³/h)
R	40009-10	2	SINGLE	Accumulative Flow Above Hundred's Digit
R	40011-12	2	SINGLE	Accumulative Flow Below Hundred's Digit
R	40013-14	2	SINGLE	Sensor Frequency(Hz)
R	40015-16	2	Retain	Retain
R	40017-18	2	SINGLE	Cv Values
R	40019-20	2	Backup	Retain


MODSCAN32 Communication Interference(03 command):

Temperature	20℃
Pressure	800KPa
Working condition instantaneous flow	5.0037 m ³ /h;
Standard condition instantaneous flow	44.5095 Nm ³ /h
Total flow above hundred	3 Nm ³
Total flow under hundred	60.4897 Nm ³
Flow sensor frequency	50Hz
Flow K factor	1.000

Read register data (in this example, read the data displayed in the current converter) Master request:


Slave response frame:

01 03 28 00 00 41 A0 00 00 44 48 16 84 40 A0 01 6A 42 32 00 00 40 40 74 5E 42 86 1C 24 42 48 00 00 FF 00 00 00 3F 80 00 00 00 9A 67

01 03 28	Address, Function code, Number of bytes	
00 00 41 A0	20°C; Temperature	
00 00 44 48	80 Kpa; Pressure	
16 84 40 A0	5.002 m3/h; Working condition flow	
01 6A 42 32	44.5013 Nm3/h; Standard condition flow	
00 00 40 40	3.0 Nm3,Total flow hundreds	
74 5E 42 86	67.2272 Nm3,total flow under hundreds; total flow =3.0*100+67.2272= 367.2272 Nm3	
1C 24 42 48	50.027Hz,frequency	
00 00 FF 00	Reserve	
00 00 3F 80	1.0 flow k factor	
00 00 00 00	Reserve	
4D 43	CRC Check	

Flow coefficient communication modification method (modified by Modscan 32 software):

Flow coefficient communication modification method (Command No. 10 (send in HEX format)):

If the meter address is 1, write the coefficient 1.0, and send the data as follows:

Send: 01 10 00 55 00 02 04 00 00 3F 80 26 FC

01 10	Add, Command No
00 55	Write start add
00 02	Write length
04	Send data byte length
00 00 3F 80	K factor(Float)
26 FC	CRC Check

Return: 01 10 00 55 00 02 51 D8 Returning this data indicates successful writing.

SMERI S-TURB

SMERI web

https://www.smeri.com/

Prodotti

https://www.smeri.com/ prodotti/

Service - Manuali

https://www.smeri.com/ service/

Service - Tutorial

https://www.smeri.com/ come-fare-per/

www.smeri.com

