

Mass flow controller VA.2.02 MFC2000 SERIES

Gas Mass Flow Controller

With proprietary MEMS flow sensing technologies

MFC2000 Series

User Manual

Document No.06-2024-MFC2 ENIssue date2024.06RevisionVA.2.02

Siargo Ltd.

4677 Old Ironsides Drive, Suite 310, Santa Clara, California 95054-1857, USA

Tel: +1(408)969-0368 Email: Info@Siargo.com

© Copyright 2024 by Siargo Ltd.

Siargo Ltd. and its subsidiaries reserve the right to change the specifications and/or descriptions without prior notice. For further information and updates, please visit: <u>www.smeri.com</u>

Attention!

- Please carefully read this manual prior to operating this product.
- Do not open or modify any hardware which may lead to irrecoverable damage.
- Do not use this product if you suspect any malfunctions or defection.
- Do not use this product for corrosive media or in a strong vibration environment.
- Use this product according to the specified parameters.
- Only the trained or qualified personnel shall be allowed to perform product services.

- Be cautious for the electrical safety, even it operates at a low voltage, any electrical shock might lead to some unexpected damages.
- The gas to be measured should be clean and free of particles. Do not apply this meter for liquid medium.
- Do not apply for any unknown or non-specified gases that may damage the product.
- For remote data, please be sure the meter is properly configured.

Table of Contents

1.	Overview	5
2.	Receipt / unpack of the products	6
3.	Knowing the products	7
3	3.1. Product description	7
3	3.2. Power and data cable description	7
3	3.3. Mechanical dimensions	8
4.	Installation1	1
5.	Operation1	3
5	5.1 Check the product specifications	-
5	5.2 Check the leakage	3
5	5.3 Power the product and digital data connection1	3
5	5.4 RS485 Modbus communication protocol1	4
	5.4.1 Hardware connection1	.4
	5.4.2 Communication parameters1	4
	5.4.3 Frame1	-5
	5.4.4 Function codes1	-5
	5.4.5 Registers	-5
5	5.5 Analog voltage (o ~ 5 Vdc) output 2	0
6.	Product selection	1
7.	Technical specifications2	3
	7.1 Specifications	3
	7.2 Pressure loss	4
8.	Technical notes for the product performance2	6
8	3.1 Measurement principle	6
	3.2 Precautions for the best performance of the product	
	8.2.1 Comparison with a third-party reference meter	6
	8.2.2 Particle contamination and fluidic cleanness	27

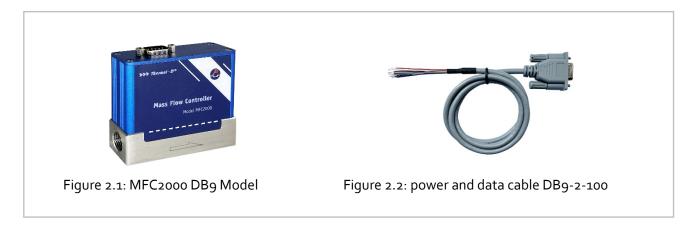
	8.2.3 Apply to a different gas medium	27
	8.2.4 Re-calibration and maintenance	28
9.	Troubleshooting	29
10.	Warranty and Liability	30
11.	Service/order contact and other information	32

1. Overview

This manual provides essential information for the operation of the MFC2000 series of gas mass flow controllers for non-corrosive gas flow control applications with the full-scale mass flow rate of from 50 mLn/min up to 200 Ln/min, and both analog set point or RS485 Modbus interface for the mass flow control. The product performance, maintenance, and troubleshooting as well as the information for product orders, technical support, and repair are also included. Other standard communication options such as DeviceNet, ProfiNet, EtherNet, EtherCat, IO-Link, etc. are available by contacting the manufacturer and will become standard offers in due course. These interfaces can also be further customized upon request.

MFC2000 mass flow controller can be applied for process control with a 100:1 dynamic range and it controls in a pressure range of 0.1 to 1MPa (15 to 150 PSI), and a compensated temperature ranging from 0 to 50°C.

The products are designed with an easy change of mechanical connectors. The standard connectors are NPT 1/8" to 1/2"-female or BSPT 1/8" to 1/2"-female, and other customized ones are available upon request.


The products are operated with Siargo's proprietary MEMS **Thermal-D**[™] calorimetric sensing technology together with smart control electronics. Compared to the conventional calorimetric flow sensing technology on the market, this unique mass flow sensing technology removes gas sensitivity for some gases with similar diffusivity and allows gas identification once programmed. The sensor surface is passivated with silicon nitride ceramic materials together with water/oilproof nano-coating for performance and reliability. This technology also offers better linearity and improves temperature performance. It is the first of a kind in the industry that senses the mass flow with multiple gases without a manual gas conversion factor. As such, it allows high precision for gas process control with air calibration.

2. Receipt / unpack of the products

Upon receipt of the products, please check the packing box before dismantling the packing materials. Ensure no damages during shipping. If any abnormality is observed, please contact and notify the carrier who shipped the product and inform the distributors or sales representatives if the order is not placed directly with the manufacturer, otherwise, the manufacturer should be informed as well. For any further actions, please refer to the return and repair section in this manual.

If the packing box is intact, proceed to open the packing box, and you shall find the product. The power and data cable (part number: DB9-2-100) as shown below may also be found if it is included in the manufacture order.

Please check immediately for the integrity of the product as well as the power and data cable, if any abnormality is identified, please notify the distributor/sales representative or manufacturer as soon as you can. If any defects are confirmed, an exchange shall be arranged immediately via the original sales channel. This user manual shall also either be included in the packing box or an electronic version via an online request. In most cases, this manual shall be made available to the customer before the actual order.

The standard cable (part number: DB9-2-100) has a DB9 connector with a length of 1.0 m. If another interface is ordered, the cable will be altered accordingly.

3. Knowing the products

3.1. Product description

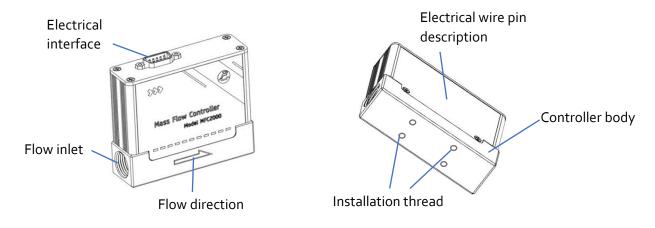
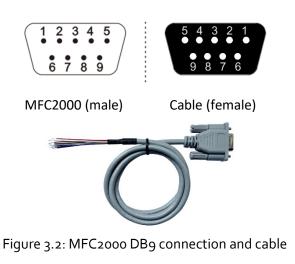
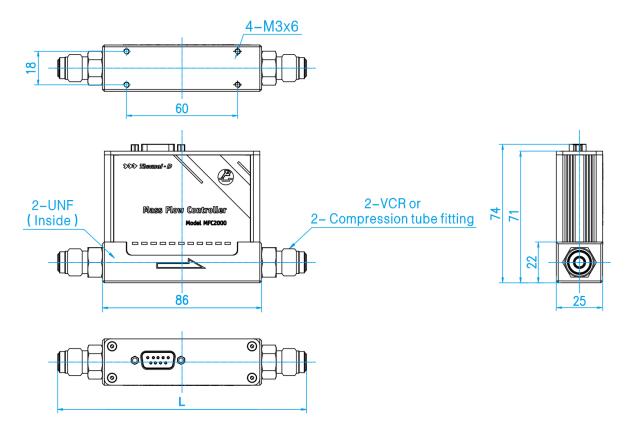


Figure 3.1: MFC2000 product with DB9 interface

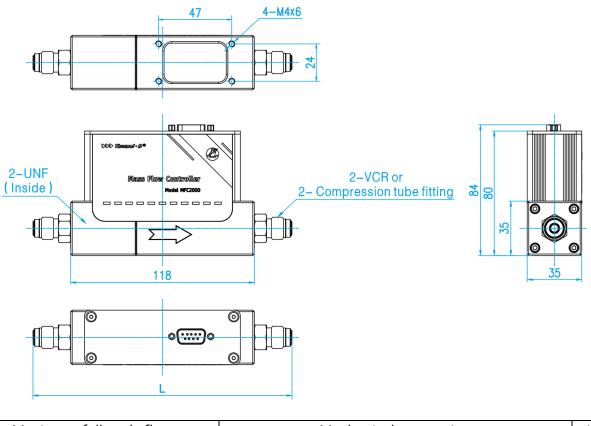
3.2. Power and data cable description




Table 3.1: MFC2000 DB9 pin/wire assignments.

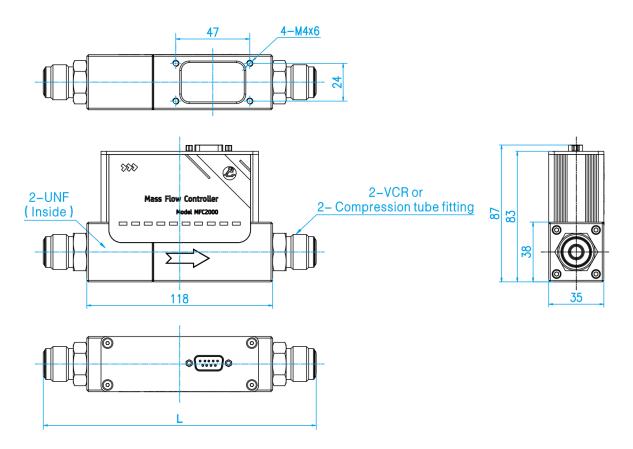
Wire	Color	Definition	
1	Purple	n/c	
2	Red	n/c	
3	White	RS485B (-)	
4	Yellow	Setpoint, analog o ~ 5 Vdc	
		or 4 ~ 20 mA	
5	Black	RS485A (+)	
6	Gray	Flow rate output, o ~ 5 Vdc	
		or 4 ~ 20 mA	
7	Brown	Power supply, (12 ~ 24) Vdc, 1A	
8	Blue	Common	
9	Green	Common	

Note 1. The standard cable (part number: DB9-2-100) has a DB9 connector with a length of 1.0 meter. The other end for customer connection is open wires.


3.3. Mechanical dimensions

Maximum full-scale flow rate	Mechanical connection	L
o50 mLn/min	U7 - 7/16-20UNF	86
o100 mLn/min o200 mLn/min	K1 - Double ferrule compression tube fitting 1/8"	133
o500 mLn/min	K2 - Double ferrule compression tube fitting 1/4"	138
o750 mLn/min	K₃M - Double ferrule compression tube fitting φ ₃ mm	132
01000 mLn/min / 01 Ln/min 02000 mLn/min / 02 Ln/min	K6M - Double ferrule compression tube fitting ϕ 6mm	138
o5000 mLn/min / 05 Ln/min	VCR2 - VCR 1/4"	134
	U9 - 9/16-18UNF	86
	K2 - Double ferrule compression tube fitting 1/4"	138
	K3 - Double ferrule compression tube fitting 3/8"	141
	K4 - Double ferrule compression tube fitting 1/2"	145
o10 Ln/min o20 Ln/min	K6M $$ - Double ferrule compression tube fitting ϕ 6mm	138
	K10M - Double ferrule compression tube fitting φ10mm	141
	K12M - Double ferrule compression tube fitting φ12mm	150
	VCR2 - VCR 1/4"	134
	VCR4 - VCR 1/2"	142

Figure 3.3: MFC2000 dimensions for models with full-scale up to 20 Ln/min.



Maximum full-scale flow rate	Mechanical connection		
	U9 - 9/16-18UNF	118	
	K2 - Double ferrule compression tube fitting 1/4"	170	
	K3 - Double ferrule compression tube fitting 3/8"	173	
a sala/min	K4 - Double ferrule compression tube fitting 1/2"	177	
050 Ln/min 0100 Ln/min	K6M $$ - Double ferrule compression tube fitting ϕ 6mm	170	
	K10M - Double ferrule compression tube fitting φ 10mm	173	
	K12M - Double ferrule compression tube fitting φ12mm	182	
	VCR2 - VCR 1/4"	166	
	VCR4 - VCR 1/2"	174	

Figure 3.4: MFC2000 dimensions for models with full-scale 50 and 100 Ln/min.

Maximum full-scale flow rate	Mechanical connection	
	U9 - 9/16-18UNF	118
	K2 - Double ferrule compression tube fitting 1/4"	170
	K3 - Double ferrule compression tube fitting 3/8"	173
o200 Ln/min	K4 - Double ferrule compression tube fitting 1/2"	177
	$\textbf{K6M}~$ - Double ferrule compression tube fitting $\phi 6 mm$	170
	K10M - Double ferrule compression tube fitting ϕ 10mm	173
	K12M - Double ferrule compression tube fitting ϕ_{12} mm	182
	VCR2 - VCR 1/4"	166
	VCR4 - VCR 1/2"	174

Figure 3.5: MFC2000 dimensions for models with full-scale 200 Ln/min.

4. Installation

Do not open or alter any part of the product which would lead to malfunction and irrecoverable damage. It will also forfeit the terms of the warranty and cause liability. Check the application requirements and verify whether they are matching to the product specifications, in particular the gas compatibility and pressure/temperature ratings for safety reasons.

The product at the time of shipment is fully inspected for its quality and meets all safety requirements. Additional safety measures during the installation should be applied. This includes but is not limited to the leakage verification procedures, standard EDS (electrostatic discharge) precautions, and DC voltage precautions. Other tasks such as calibration, part replacement, repair, and maintenance must only be performed by trained personnel. Upon request, the manufacturer will provide necessary technical support and/or training for the personnel.

There are no preferred space directions for the installation. However, since the products are calibrated at the horizontal installation, vertical placement of the product may incur some minor offset if the products are calibration with a large dynamic range. When this happened, please apply the reset offset function described in this manual (Section 5) to ensure the offset is properly zeroed. The flow direction should be aligned with the arrow mark on the meter body. If the flowing fluid may have particles or debris, a filter is strongly recommended to be installed upstream of the meter.

The products have four mounting holes (threaded) located at the bottom of the products, refer to Section 3.3.

The connection pipes or tubes should be clean and free of foreign materials. Gas compatibility must be observed for the proper performance of the products. To ensure there is no gas instability, the pipe or tube diameter should be matching with that of the product. Avoid installing pipes or tubes with a smaller diameter than that of the products, otherwise, it may create a strong flow instability in particular at the laminar flow range, and result in significant inaccuracy of the measurements.

If another valve or pressure regulator must be installed closer to the products, please keep them at a distance of at least 15 times the pipe diameter from the products.

Please follow the following steps to complete the installation:

- a) Upon opening the package, the product's physical integrity should be inspected to ensure no visual damage.
- b) Do not install this product in an environment with excessive vibration, noise, and or
- c) Before installation of the product, please ensure that the pipe debris or particles or any other foreign materials are completely removed.
- d) Close the upstream valve, if any, completely.
- e) During installation, please make sure no foreign materials (such as water, oil, dirt, particles, etc.) enter the installation pipeline.

- f) Make sure the power source is at the off status before connecting electrical wires per the wire definition in Table 3.1. Please be sure of the power supply range (i.e., 12 ~ 24 Vdc, 1 A) and power supply polarization. If an adapter is used, make sure the adapter meets industrial standards and has all safety certifications.
- g) For the data communication wire connection, please follow the description in Table 3.1 and make sure that the wires are correctly connected to the proper ports on your data device/equipment. Please make sure the data cable meets industrial standards with proper shielding.
- h) Before starting to flow control process, make sure no leakage is present after the installation.
- i) This will conclude the installation.

A Cautions

- a) Don't alter any parts of the product.
- b) Ensure the electrical connection is properly done per the instructions.
- c) Make sure no mechanical stresses in the connections.
- d) The strong electromagnetic interference sources close by or any mechanical shocks at the pipeline may also create malfunctioning of the product.

5. Operation

5.1 Check the product specifications

Before starting to use this product, check the product specifications that can be found in this manual or the basic information from the datasheet at the company's website www.smeri.com.

The detailed product technical specifications can be found in Section 7. For a specific application, the pressure rating must not be higher than the system pressure to be measured, and the flow range should also be within the specified ones. The gas medium to be for the controller must also be consistent with that specified by the product. Be particularly cautious about the supplied voltage indicated in the specification. A higher voltage may lead to irrecoverable damage, and a lower voltage will not power the product for any desired functions.

For the best performance of the product, it is advised that the gas to be applied must be clean and free of particles or other foreign materials.

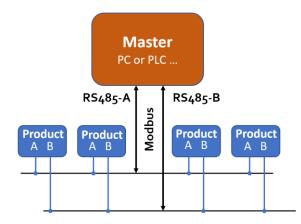
5.2 Check the leakage

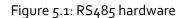
Check gas leakage in the pipe system before the operation. If it is needed, pressurized nitrogen or air can be used for the leakage check.

5.3 Power the product and digital data connection

Although this product complies with the CE-required EMC regulations, it also requires the product to be used according to the standard electrical device practice. Before connecting the product with external DC power, make sure the supply voltage is within the range of the specified ones in Section 7. Be cautious that standard electrical device precautions such as EDS (electrostatic discharge) and DC voltage are observed. Excessive electrostatic discharge may damage the product.

The manufacturer-supplied power and data cable has a locking fixture. Lock the cable and make sure it is properly engaging and will not be accidentally got unplugged.




5.4 RS485 Modbus communication protocol

The digital communication protocol is based on standard Modbus RTU Half-plex mode. A master (PC or PLC) can communicate with multiple slaves (the current product) for data exchange and communication parameter configuration. Refer to Table 3.1 for the cable connection.

5.4.1 Hardware connection

The RS485 hardware layer is TIA/EIA-485-A, as illustrated below. In this configuration, the product (MFC2000) is a slave.

5.4.2 Communication parameters

The PC UART communication parameters are listed in Table 5.1.

Table 5.1: PC UART	communication parameters
--------------------	--------------------------

Parameters	Protocol	
	RTU	
Baud rate (Bits per second)	38400 bps	
Start bits	1	
Data bits	8	
Stop bits	1	
Even/Odd parity	None	
Bits period	104.2 µsec	
Bytes period	1.1458 msec	
Maximum data length	20	
Maximum nodes	247	

5.4.3 Frame

The frame function is based on the standard Modbus RTU framing:

Table 5.2: frame function

	Start_bits	Address	Function codes	Data	CRC	Stop_bits	
	T1-T2-T3-T4	8 bit	8 bit	N 8 bit (20≥n≥o)	16 bit	T1-T2-T3-T4	
	Start_bits:	4 periods	of a bit time for a n	ew frame.			
/	Address:	The addres	s can be set from 1 t	o 247 except for 157	(0x9d). 0 is	the broadcast address.	
Function codes:		Define the product's functions/actions (slaves), either execution or response.					
Data:		The address of the register, length of data, and the data themselves.					
CRC: CRC verification code. The low byte is followed by the high byte. For examp CRC is divided into BYTE_H and BYTE_L. The BYTE_L will come first in th followed by the BYTE_H. The last one is the STOP signal.				•			
Stop_bits:		4 periods of a bit time for ending the current frame.					

5.4.4 Function codes

The Modbus function codes applied for the product are the sub-class of the standard Modbus function codes. These codes are used to set or read the registers of the product:

Code Name		Functions	
oxo3 Read register		Read register(s)	
oxo6 Set single register ox10 Set multiple registers		Write one single 16-bit register	
		Write multiple registers	

Table 5.3: function codes

5.4.5 Registers

The product (MFC2000) has multiple registers available for the assignment of the various functions. With these functions, the user can obtain the data from the products, such as *product address* and *flow rates* from the registers, or set the product functions by writing the corresponding parameters.

The currently available registers are listed in the following table, and the registers may be customized upon contacting the manufacturer. Where R: read; W: write-only; W/R: read and write.

Note: At the time of shipping, the write protection function is enabled except for address and baud rate. Once the user completes the register value change, the write protection will be automatically enabled again to prevent incidental data loss.

Table 5.4: Registers

Functions	Description	Register	Modbus
Address	Product address (R/W)	0X0081	40130 (0x0081)
Serial number	Serial number of the product (R)	0X0030 ~ 0X0035	40049 (0x0030)
Flow rate	Current flow rate (R)	охоозА ~ охоозВ	40059 (0x003A)
Baud rate	Communication baud rate (R/W)	0X0082	40131 (0x0082)
GCF *	Gas conversion factor (R/W)	oxoo8B	40140 (0x008B)
Digital filter depth *	Response time or sampling time (R/W)	oxoo8C	40141 (0x008C)
Setpoint source	Set the setpoint source (R/W)	oxooBA	40187 (0x00BA)
Setpoint	Set the flow rate in percentage of the full- scale flow (R/W)	охооВВ	40188 (0x00BB)
Setpoint flow	Read the current flow rate set by the user. (R)	oxooBC ~ oxooBD	40189 (0x00BC)
P Gain	PD proportional control of the valve/flow rate. (R/W)	oxooBE	40191 (0x00BE)
D Gain	PD differential control of the valve/flow rate. (R/W)	oxooBF	40192 (0x00BF)
Valve preload offset	Default or preloaded valve opening. (R/W)	охооСо	40193 (0x00C0)
Exhaust mode	Set the exhaust mode (R/W)	0X00C1	40194 (0x00C1)
Exhaust value	The value provides the setting percentage of the opened valve. This option is for open-loop control only. (R/W)	0x00C2	40195 (0x00C2)
Valve status	The value provides the percentage of the opened valve (R)	охооС3	40196 (0x00C3)
Offset calibration	Offset reset or calibration (W)	oxooFo	40241 (0x00F0)
Write protection	Write protection of selected parameters (W)	oxooFF	40256 (oxooFF)

Notes: 1, R – Read-only, W – Write only, R/W – Read and write.

2, For the * marked functions, please disable the write protection before executing the command.

The detailed information of each register is described below: Y: enabled; N: disabled

Address	0x0081	Write	Y
Address	0X0001	Read	Υ
Description Address of the product			
Value type	UINT 16		
Notes	Values from 1 to 247 except for 157 (0x9d). The broadcast address is disabled, and the default address is 1.		
	I he broadcast address is disabled, and the de	fault address is 1.	

SN, Serial number	oxoo3o ~ oxoo35	Write	Ν
		Read	Υ
Description	Series Number of the product, SN		
Value type	ASCII		
	SN= value(oxoo30), value(oxoo31),,value (oxoo35); Receiving 12 bits as 2A 41 31 42 32 33 34 35 36 2A, the corresponding Serial		
Notes			
	Number is **A1B23456**.		

Flow rate OXOO		Write	Ν
	οχοο3Α ~ οχοο3Β	Read	Y
Description	Current flow rate		
Value type	UINT 32		
Notes	Flow rate = [Value (0x003A) * 65536 + value (0x003B)] / 1000 Note: The unit is same with the model number, mLn/min or Ln/min. e.g., When the user reads "0" from register 0x003A and "20340" from register 0x003B, the current flow rate = (0 * 65536 + 20340) / 1000 = 20.340 mLn/min or Ln/min		

Baud rate	020082	Write	Y
		Read	Y
Description	Communication baud rate		
Value type	UINT 16		
Notes	o: baud rate=4800; 1: baud rate=9600; 2: baud rate=19200; 3 baud rate=38400. The default value is 3.		
	e.g., When the user reads "3" from register ox	0082, the baud ra	te is 38400.

CCE	GCF oxoo8B	avea ^Q D	Write	Υ
GCF	0X000D	Read	Υ	
Description	The gas conversion factor for application gas	The gas conversion factor for application gas which is different from the		
Description	calibration gas			
Value type	UINT 16			
	The GCF of air is 1000 (default), it can be read from register 0x008B.			
Note: The product will disable this function with write protection		tion once the		
Notes	metering gas is confirmed with the proper GCF. For the GCF values,			
	please contact the manufacturer.			

Digital filter depth OXOC	020090	Write	Y
	0x008C	Read	Y
Description	Digital filter depth setting		
Value type	UINT 16		
Notes	o ~ 9 programmable, corresponding to 2º ~ 2 ⁹ data sampling in the software filter.		
	The default value is 3, corresponding to 2 ³ = 8 data sampling.		

Setpoint source	οχοοΒΑ	Write	Υ
		Read	Υ
Description	Set the setpoint source		
Value type	UINT 16		
	Available valve modes: 0 and 1.		
Notes	o – analog control;		
	1 – digital control.		

Setpoint	oveoDD	Write	Y
	οχοοΒΒ	Read	Y
	Set the flow rate in percentage of the full-sca	le flow, where o is	zero flow or o%
Description	and 64000 corresponds to the full scale of 100	%. The default va	alue is o, or zero
	flow		
Value type	UINT 16		
	Available valve parameters: o ~ 65535.		
Notes	o ~ 64000 corresponding to 0% ~ 100%.		
	0 - 0%;		
	64000 - 100%.		

Setpoint flow	οχοοΒϹ ~ οχοοΒD	Write	Ν
		Read	Υ
Description	Read the current flow rate that is set by the user. The default value is 0.000 Ln/min with a resolution of 0.001 Ln/min		
Value type	UINT 32		
Notes	Available valve parameters: 0 ~ 110000, i.e., 0 ~ 110.000 Ln/min.		

P Gain	οχοοΒΕ	Write	Υ
		Read	Υ
Description	PD proportional control of the valve/flow rate		
Value type	UINT 16		
Available valve parameters: o ~ 9999.			
Notes	The default value is 15.		

D Gain	ave a D F	Write	Υ
	oxooBF	Read	Y
Description	PD differential control of the valve/flow rate		
Value type	UINT 16		
Available valve parameters: o ~ 9999.			
Notes	The default value is 25.		

Valve preload offset	οχοοζο	Write	Y
		Read	Y
Description	Default or preloaded valve opening.	•	·
Value type	UINT 16		
Notes	Available valve parameters: 0 ~ 9999. The default value is 2000.		

Exhaust mode	0x00C1	Write	Y
		Read	Y
Description	Set the exhaust mode		
Value type	UINT 16		
	Available valve control modes: 0 and 1.		
Notes	o - Valve in PD control		
	1 - Valve in open-loop control		

Exhaust value		Write	Υ
	0x00C2	Read	Υ
Description	The value provides the setting percentage of the opened value		
Description	This option is for open-loop control only.		
Value type	UINT 16		
	Available valve parameters: 0 ~ 10000.		
0 ~ 10000 corresponding to 0% ~ 100%.			
Notes o - fully closed or o%;			
	10000 - fully open or 100%.		
	The default value is 10000, i.e., fully open.		

Value statue	ax/aaCa	Write	Ν
Valve status	οχοοC3	Read	Υ
Description	This option is for both PD control and open-loop control.		
Description	The value provides the percentage of the opened valve		
Value type	UINT 16		
	Available valve parameters: 0 ~ 65535.		
Notes 0 ~ 65535 corresponding to 0% ~ 100%.			
Notes	o - fully closed or o%;		
	65535 - fully open or 100%.		

Offset calibration	avaaFa	Write	Y
Onset campration	οχοοϜο	Read	Ν
Description	Reset or calibrate the offset		
Value type	UINT 16, Fixed value 0xAA55		
	To reset or calibrate the offset, write oxAA55 to register oxooFo.		
Notes	Note: When executing this function, ensure there is NO flow in the flow		
	channel.		

Write protection		Write	Υ
Write protection	oxooFF	Read	Ν
Description	Write protection disabler for a set value to a specific register.		
Value type	UINT 16, Fixed value 0xAA55		
Notes	This function is enabled at the time of produc function of a specific parameter, such as GCF oxAA55 to the register oxooFF, and then the (write protection is disabled). After the write firmware will automatically re-enable the write	or offset, the user write function will execution is comp	needs to send be enabled

5.5 Analog voltage (o ~ 5 Vdc) output

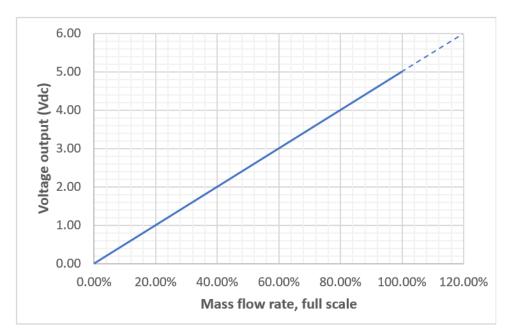


Figure 5.2: Analog output.

6. Product selection

The product part number is composed of the product model number and suffixes indicating the fullscale flow rate, as well as the other parameters. Refer to the following for details.

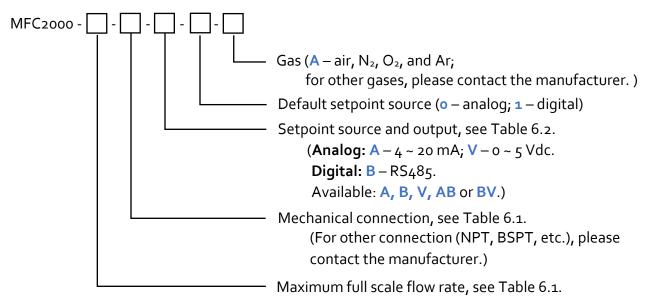


Table 6.1: Maximum full scale flow rate and mechanical connection.

Max	imum full scale flow rate	Mechanical connection
0050	o50 mLn/min	
0100	o100 mLn/min	U7 - 7/16-20UNF
0200	o200 mLn/min	K1 - Double ferrule compression tube fitting 1/8"
0500	o500 mLn/min	K2 - Double ferrule compression tube fitting 1/4"
0750	o750 mLn/min	K₃M - Double ferrule compression tube fitting φ_3 mm
1000/001	01000 mLn/min / 01 Ln/min	K6M - Double ferrule compression tube fitting ϕ 6mm
2000 / 002	02000 mLn/min / 02 Ln/min	VCR2 - VCR 1/4"
5000 / 005	o5000 mLn/min / o5 Ln/min	
010	010 Ln/min	Ug - 9/16-18UNF K2 - Double ferrule compression tube fitting 1/4"
020	o20 Ln/min	 K3 - Double ferrule compression tube fitting 3/8" K4 - Double ferrule compression tube fitting 1/2"
050	o50 Ln/min	K6M $$ - Double ferrule compression tube fitting ϕ 6mm
100	o100 Ln/min	K10M - Double ferrule compression tube fitting φ10mm K12M - Double ferrule compression tube fitting φ12mm
200	o200 Ln/min	VCR2 - VCR 1/4" VCR4 - VCR 1/2"

Four-digit number is for mLn/min, while three-digit number is for Ln/min.

For other ranges, please specify, for example, 0...50 mLn/min, the full-scale will be 0050; other please contact the manufacturer.

Setpoint source and output	Default setpoint source	Description
A	0	Setpoint source and output is 4 ~ 20 mA
В	1	Setpoint source and output is RS485
V	0	Setpoint source and output is o ~ 5 Vdc
		Setpoint source and output is 4 ~ 20 mA
	0	and RS485, in which 4 ~ 20 mA is the
AB		default setpoint source.
AB		Setpoint source and output is 4 ~ 20 mA
	1	and RS485, in which RS485 is the default
		setpoint source.
		Setpoint source and output is 1 ~ 5 Vdc
	0	and RS485, in which 1 ~ 5 Vdc is the
BV		default setpoint source.
		Setpoint source and output is 1 ~ 5 Vdc
	1	and RS485, in which RS485 is the default
		setpoint source.

Table 6.2: Setpoint source and output and default setpoint source.

For example, MFC2000-0100-K1-BV-0-A is a model for 0...100 mLn/min, with double ferrule compression tube fitting 1/8", setpoint source, and output analog o ~ 5 Vdc and digital RS485 Modbus, default setpoint source analog (o ~ 5 Vdc), and applicable for air, nitrogen, oxygen, or argon.

MFC2000-100-VCR4-BV-1-A is a model for o...100 Ln/min, with VCR 1/2" connector, setpoint source, and output analog o ~ 5 Vdc and digital RS485 Modbus, default setpoint source digital (RS485 Modbus), and applicable for air, nitrogen, oxygen, or argon.

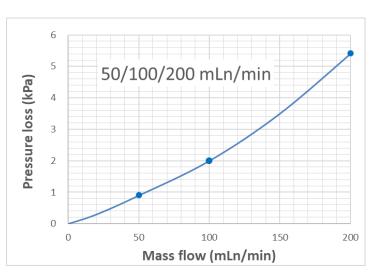
For other interfaces, such as DeviceNet, ProfiNet, IO-Link, etc., please contact the manufacturer. These interfaces will be the standard offer in due course. Please check back at <u>www.smeri.com</u> for updates and additional information.

7. Technical specifications

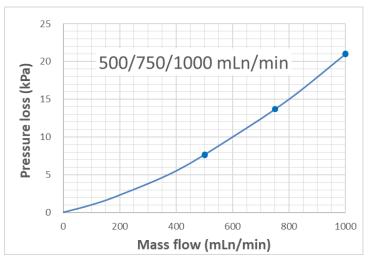
7.1 Specifications

All specifications listed in the following table unless otherwise noted apply for calibration conditions at 0 °C and 101.325 kPa absolute pressure with air. The product is horizontally mounted at the time of calibration.

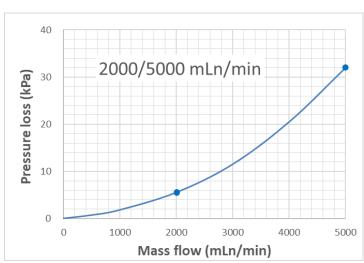
	Value	Unit
Full-scale range	0 ~ 50 mLn/min 0 ~ 5000 mLn/min 0 ~ 1 0 ~ 200 Ln/min	
Accuracy	± 1.0% r.d. (20 ~ 100% of full scale) ±0.2% f.s. (<20% of full scale)	
Repeatability	± 0.3% r.d. (20 ~ 100% of full scale) ±0.06% f.s. (<20% of full scale)	
Turn-down ratio	100:1	
Max control range	120	%FS
Control pressure range	0.1 ~ 0.8	MPa
Maximum operating differential pressure	0.4	MPa
Setpoint source (input signal)	Analog: 0 ~ 5 Vdc or 4 ~ 20 mA Digital: RS485	
Settling time	100	msec
Working temperature	0 ~ 55	°C
Humidity	<95, no condensation	%RH
Burst pressure	1.5	MPa
Max pressure loss	80 (100 Ln/min models)	kPa
Power supply	(12 ~ 24) Vdc, 1A	
Output signal	Analog: 0 ~ 5 Vdc or 4 ~ 20 mA Digital: RS485	
Max null shift (analog)	±30	mVdc
Control valve	Normally Closed (NC)	
Electrical connector	DB9	
Mechanical connection	7/16-20UNF9/16-18 UNF, Compression tube fitting 1/8"1/2", or VCR 1/4"1/2"	
Protection	IP40	
Storage temperature	-20 ~ +70	°C
Reference conditions	0 °C, 101.325 kPa, air	
Fluid compatibility	Non-corrosive	
CE	EN61000-2; -3; -4	
Environmental	RoHS, REACH	


*For the other digital interface, please contact the manufacturer.

7.2 Pressure loss

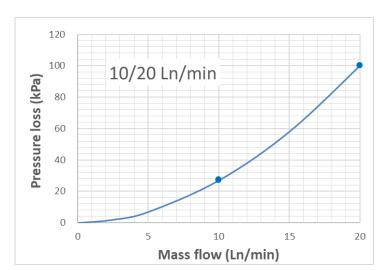

7.2.1 50/100/200 mLn/min

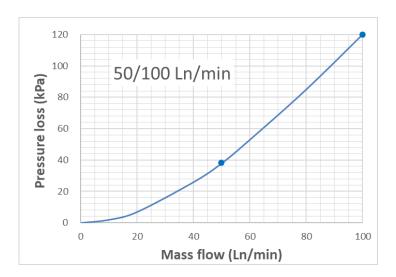
Flow rate (mLn/min)	Pressure loss (kPa)
0	0.0
20	0.3
50	0.9
100	2.0
150	3.5
200	5.4


7.2.2 500/750/1000 mLn/min (1 Ln/min)

Flow rate (mLn/min)	Pressure loss (kPa)
0	0.0
100	1.0
200	2.3
400	5.5
600	10.0
800	15.0
1000	21.0

7.2.3 2000/5000 mLn/min (2/5 Ln/min)


Flow rate (mLn/min)	Pressure loss (kPa)
0	0.0
500	0.7
1000	1.8
2000	5.5
3000	11.5
4000	20.5
5000	32.0


7.2.4 10/20 Ln/min

Flow rate (Ln/min)	Pressure loss (kPa)
0	0.0
2.5	2.0
5	7.0
10	27.0
15	58.0
20	100.0

7.2.5 50/100 Ln/min

Flow rate (Ln/min)	Pressure loss (kPa)
0	0.0
10	2.0
20	7.0
40	26.0
50	38.0
60	53.0
80	85.0
100	120.0

7.2.6 200 Ln/min

Flow rate (Ln/min)	Pressure loss (kPa)
0	0.0
25	3.0
50	12.0
100	40.0
150	76.0
200	118.0

8. Technical notes for the product performance

8.1 Measurement principle

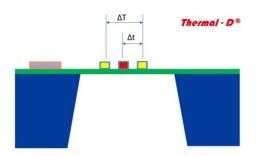


Figure 8.1: Measurement approach illustration.

The products utilize the Company's proprietary micromachined (MEMS) thermal calorimetric sensing with timedomain data and data process technology. A thermal signal generator with a pair of sensing elements up and downstream of the microheater is precisely manufactured and separated at predefined micrometer distances on a chip surface with excellent thermal isolation. When a fluid is flowing through the sensing chip, the fluid carries the thermal signal downstream. The sensing elements register the amplitude, time, and temperature differences, calculating the thermal diffusivity and further correlating to the fluid mass flow rate via the calibration process.

This unique thermal sensing approach offers a large dynamic range with a better performance against environmental parameter alternations. It is the first of the kind in the industry that offers the gas property independent mass flow measurements for gases with similar thermal diffusivities. It significantly simplifies process control with high precision and easy maintenance. Please refer to the company's US patents and other publications made available to the public for additional information.

8.2 Precautions for the best performance of the product

8.2.1 Comparison with a third-party reference meter

It is a general practice that a user may compare the data from the product with a third-party reference meter, and in many cases, there could be some discrepancies.

When performing such a comparison, please note that the reference meter should have a betterspecified accuracy (about 1/3 of the product), and pay special attention to the differences in the reading accuracy and full-scale accuracy.

A full-scale accuracy = reading accuracy x (full-scale flow rate/ set point (current) flow rate)

Another key point to comparing the different flow meters is that as long as the fluidic flow is a continuous flow without pulsation, then the fluidic dynamic will have the system following the Bernoulli equation:

$$P_1 + rac{1}{2}
ho v_1^2 +
ho gh_1 = P_2 + rac{1}{2}
ho v_2^2 +
ho gh_2$$

where ρ is the fluid density; g is the acceleration due to gravity; P1 is the pressure of the reference meter; P2 is the pressure at the test meter; v1 is the velocity of the reference meter, and v2 is the velocity of the test meter. h1 and h2 are the corresponding height for the meters which in most cases is the same in the system. Therefore, it would be very critical to have the system not have a pressure variation. (This explains our recommendations for the installations in Section 4). Also, the meter measurement principle is often very important for the understanding of any discrepancies.

Please note for comparison with a rotameter, the reading could have large deviations due to the different measurement principles, in particular as a rotameter is sensitive to pressure and temperature variations.

8.2.2 Particle contamination and fluidic cleanness

Any contamination including particles and liquid vapors would be detrimental to the accuracy of the flow measurement and also to the meter functionality. It is important to ensure the applied flow medium will be clean and dry. If any contamination is suspected, please allow experienced technical personnel to have it checked and re-conditioned. Do not use a foreign cleanser or other fluids to clean the flow path which could bring irrecoverable damage.

8.2.3 Apply to a different gas medium

The product is calibrated with a high-precision NIST traceable metrological standard with clean and dry air. Thanks to the unique thermal sensing technology, the product can be applied to meter and control the other clean and dry gas with similar thermal diffusivities without losing accuracy. It effectively solves the nonlinearity issues of applying a gas conversion factor in calorimetric sensing, making the measurement highly accurate in a large dynamic range. Gases that can be applied include air, N₂, O₂, Ar, CH₄, and CO.

This innovative product operates also follows the basic sensing principle described in the international standard for thermal mass flow meters (ISO 14511:2001 - Measurement of fluid flow in closed conduits — Thermal mass flowmeters). For gases with different diffusivities, a gas conversion factor could be applied. Please contact your sales or manufacturer for additional information.

Under normal operation conditions, the wetted materials are fully compatible with common gases, such as air, oxygen, nitrogen, argon, and carbon dioxide. If a special gas will be applied, please check back with the manufacturer for gas compatibility analysis. In some cases, some package materials may need to be changed for gas compatibility, or additional hazardous zone certification will be needed before the products can be used.

8.2.4 Re-calibration and maintenance

The re-calibration of the controller will be dependent on the usage and application requirements, and therefore it is more a decision by the applications.

If preferred, SMERI can offer free calibration software or a user application kit to facilitate the customer's calibration requirements. Alternatively, please contact your sales or directly contact the manufacturer for assistance. Siargo calibrates all products with NIST (National Institute of Standards and Technology, USA) traceable calibrators.

For maintenance, the services must be performed by trained or certified technicians by Siargo. Any arbitrary changes to the products will nullify the warranty of the products. It could lead to irrecoverable damages to the products and even could lead to unexpected injuries.

The products do not require regular maintenance if the specified application conditions are exactly observed. Only if any clear indications of contamination and or malfunctions, maintenance would be required. Once this happened, please contact your sales or directly contact customer support (information available on the Company's webpage) to obtain an RMA (Return Materials Authorization) before shipping the products back to the Company's support center. Siargo commits to respond as fast as we can, and normal service will be done within 5 business days if no major parts change is required.

9. Troubleshooting

Phenomena	Possible causes	Actions
No signal	The power is not connected;	Connect the power, check the cable
	Cable connection incorrect	Check cable
	No flow or clogging	Check flow and contamination
	Power regulator failure	Return to factory
	Sensor failure	Return to factory
Large errors or unexpected flow rate	Particles, fluid type	Check system
Erroneous or large noise	Vibration, unstable flow	Check system
Valve not work	Wire connection, valve	Return to factory
Offset unstable	Circuitry instability	Check the system, power off
No digital interface	Wrong address, software	Check commands, connection

10.Warranty and Liability

(Effective January 2018)

Siargo warrants the products sold hereunder, properly used, and properly installed under normal circumstances and service. As described in this user manual, it shall be free from faulty materials or workmanship for 180 days for OEM products and 365 days for non-OEM products from the date of shipment. This warranty period is inclusive of any statutory warranty. Any repair or replacement serviced product shall bear the same terms in this warranty.

Siargo makes no warranty, representation, or guarantee and shall not assume any liability regarding the suitability of the products described in this manual for any purposes that are not specified in this manual. The users shall be held full responsibility for validating the performance and suitability of the products for their particular design and applications. For any misusage of the products out of the scope described herein, the user shall indemnify and hold Siargo and its officers, employees, subsidiaries, affiliates, and sales channels harmless against all claims, costs, damages, and expenses or reasonable attorney fees from direct or indirect sources.

Siargo makes no other warranty, express or implied, and assumes no liability for any special or incidental damage or charges, including but not limited to any damages or charges due to installation, dismantling, reinstallation, etc. other consequential or indirect damages of any kind. To the extent permitted by law, the exclusive remedy of the user or purchaser, and the limit of Siargo's liability for any and all losses, injuries, or damages concerning the products, including claims based on contract, negligence, tort, strict liability, or otherwise shall be the return of products to Siargo, and upon verification of Siargo to prove to be defective, at its sole option, to refund, repair or replacement of the products. Regardless of form, no action may be brought against Siargo more than 365 days after a cause of action has accrued. The products returned under warranty to Siargo shall be at the user or purchaser's risk of loss and will be returned, if at all, at Siargo's risk of loss. Purchasers or users are deemed to have accepted this limitation of warranty and liability, which contains the complete and exclusive limited warranty of Siargo. It shall not be amended, modified, or its terms waived except by Siargo's sole action.

This manual's product information is believed to be accurate and reliable at the time of release or made available to the users. However, Siargo shall assume no responsibility for any inaccuracies and/or errors and reserves the right to make changes without further notice for the relevant information herein.

This warranty is subject to the following exclusions:

(1) Products that have been altered, modified, or have been subject to unusual physical or electrical circumstances indicated but not limited to those stated in this document or any other actions which cannot be deemed as proper use of the products;

- (2) Products that have been subject to chemical attacks, including exposure to corrosive substances or contaminants. In the case of battery usage, long-term discharge, or leakage-induced damages;
- (3) Products that have been opened or dismantled for whatever reasons;
- (4) Products that have been subject to working conditions beyond the technical specification as described by this manual or related datasheet published by the manufacturer;
- (5) Any damages incurred by the incorrect usage of the products;
- (6) Siargo does not provide any warranty on finished goods manufactured by others. Only the original manufacturer's warranty applies;
- (7) Products that are re-sold by unauthorized dealers or any third parties.

11. Service/order contact and other information

Siargo Ltd. is making every effort to ensure the quality of its products. In case of questions and or product support, please contact your direct sales, or in case you need additional assistance, please contact customer service at the address listed below. We will respond to your request in a timely fashion and work with you toward your complete satisfaction.

For sales or product orders, please contact the local sales representatives or distributors that can be found on the company's webpage: <u>www.smeri.com</u>.

For any returns, please contact your direct sales to obtain an RMA. In case you need any further assistance, please contact <u>smeri@smeri.com</u> to obtain additional information or a Return Materials Authorization (RMA) before shipping the product back to the factory for factory services such as calibration. Please specify as clearly as possible in your email message about the product's status that you intend to ship back to the factory, and include your shipping address. Be sure to write the RMA on the returned package or include a letter with the RMA information.

For further information and updates, please visit <u>www.smeri.com</u>.

smeri prodotti

smeri service manuali smeri service tutorial

smeri web

SMERI s.r.l. I 20057 Assago MI - Via Mario Idiomi 3/13 Tel. +39 02 539 8941 - Fax +39 02 539 3521 E-mail: smeri@smeri.com - www.smeri.com

